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ORTHOGONAL POLYNOMIALS FOR THE WEAKLY

EQUILIBRIUM CANTOR SETS

GÖKALP ALPAN AND ALEXANDER GONCHAROV

(Communicated by Walter Van Assche)

Abstract. LetK(γ) be the weakly equilibrium Cantor-type set introduced by
the second author in an earlier work. It is proven that the monic orthogonal
polynomials Q2s with respect to the equilibrium measure of K(γ) coincide
with the Chebyshev polynomials of the set. Procedures are suggested to find
Qn of all degrees and the corresponding Jacobi parameters. It is shown that
the sequence of the Widom factors is bounded below.

1. Introduction

This paper is concerned with the spectral theory of orthogonal polynomials for
measures supported on Cantor sets with a special emphasis on the purely singular
continuous case. It should be noted that Cantor sets appear as supports of spectral
measures for some important discrete Schrödinger operators used in physics (see
e.g. the review [27] and [3]). We are interested in the following two problems
related to orthogonal polynomials on Cantor-type sets. What can be said about
the periodicity of corresponding Jacobi parameters? What is the notion of the
Szegő class of measures on Cantor sets?

Concerning the first problem, the fundamental conjecture (see [21] and also Con-
jecture 3.1 in [18]) is that, for a large class of measures supported on Cantor sets,
including the self-similar measures generated by linear iterated function systems
(IFS), the corresponding Jacobi matrices are asymptotically almost periodic. Con-
firmation of this hypothesis may allow us to extend the methods used in [11,12] for
the finite gap sets to the Cantor sets with zero Lebesgue measure.

Concerning the second question, we mention that Szegö’s theorem was gener-
alized recently in [10] to the class of Parreau-Widom sets. Such sets may be of
Cantor-type, but they must be of positive Lebesgue measure.

We can mention two main directions in the development of the theory of orthog-
onal polynomials for purely singular continuous measures. The first deals with a
renormalization technique suggested by Mantica in [20], which enables us to effi-
ciently compute Jacobi parameters (see e.g. [17, 18, 20]) for balanced measures via
a linear IFS. Moreover, possible extensions of the notion of an isospectral torus for
singular continuous measures can be found in [18, 22].
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On the other hand, there is a theory of orthogonal polynomials for equilibrium
measures of real polynomial Julia sets (see e.g [4–7]). This includes simple formulas
for orthogonal polynomials and recurrence coefficients, and almost periodicity of
Jacobi matrices for certain Julia sets.

Here, we consider a family of Cantor sets K(γ), introduced in [16]. A sequence
γ = (γs)

∞
s=1 serves as a parameter for the considered family of sets. By changing

γ we can get sets of different logarithmic capacity and Hausdorff dimension. At
least in known cases, the set K(γ) is dimensional, that is, there exists a dimension
function h such that for the corresponding Hausdorff measure Λh we have 0 <
Λh(K(γ)) < ∞. By [1], the equilibrium measure μK(γ) of K(γ) and Λh are mutually
absolutely continuous. This is not valid for geometrically symmetric zero Lebesgue
measure Cantor sets, where, by [19] and followers, these measures are mutually
singular.

We remark that the method of construction of the set is related to inverse poly-
nomial image techniques. Thus, our results can be compared with [8,15]. Further-
more, similarities between the results obtained here and for orthogonal polynomials
on Julia sets are not mere coincidence. As soon as inf γk > 0, K(γ) can be consid-
ered as a generalized polynomial Julia set in the sense of Brück-Büger [9]. Moreover,
some results of this paper can be transferred into a more general setting. For more
details, we refer the reader to [2].

Our paper is organized as follows. In Section 2 we recall some facts from [16]
about K(γ) and show that the monic orthogonal polynomial Q2s of degree 2s

for μK(γ) coincides with the corresponding Chebyshev polynomial. In Sections 3
and 4 we suggest a procedure to find Qn for n �= 2s. This allows us to analyze
the asymptotic behavior of the Jacobi parameters (an)

∞
n=1. Note that, if one can

obtain a stronger version of Theorem 4.7 by showing that the limit of aj2s+n holds
uniformly in n and j as in [6], this would imply that the Jacobi matrices considered
here are almost periodic provided that sup γk ≤ 1/6.

Since Cap(K(γ)) is known, we estimate (Section 5) the Widom factors Wn :=
a1···an

Cap(K(γ))n and check the Widom condition that characterizes the Szegő class of

Jacobi matrices in the finite gap case. In the last section we discuss a possible
version of the Szegő condition for singular continuous measures. At least for γs ≤
1/6, s ∈ N, the Lebesgue measure of the set K(γ) is zero, so it is not a Parreau-
Widom set and Theorem 2 of [10] cannot be applied.

For the basic concepts of the theory of logarithmic potential, see e.g [25], log
denotes the natural logarithm, Cap(·) stands for the logarithmic capacity, 00 := 1.
We denote N ∪ {0} by N0.

2. Orthogonal polynomials

Given a sequence γ = (γs)
∞
s=1 with 0 < γs < 1/4 define r0 = 1 and rs = γsr

2
s−1.

Let

(2.1) P1(x) := x− 1 and P2s+1(x) := P2s(x) · (P2s(x) + rs)

for s ∈ N0 in a recursive fashion. Thus, P2(x) = x · (x − 1) for each γ, whereas,
for s ≥ 2, the polynomial P2s essentially depends on the parameter γ. For s ∈ N0
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consider a nested sequence of sets

Es = {x ∈ R : P2s+1(x) ≤ 0} =

(
2

rs
P2s + 1

)−1

([−1, 1]) =

2s⋃
j=1

Ij,s,

where Ij,s are closed basic intervals of the s−th level which are necessarily disjoint.
Let lj,s stand for the length of Ij,s where we enumerate them from the left to the
right. By Lemma 2 in [16], max1≤j≤2s lj,s → 0 as s → ∞. Therefore, K(γ) :=⋂∞

s=0 Es is a Cantor set.
By Lemma 6 in [16],

γ1 · · · γs < li,s < exp

(
16

s∑
k=1

γk

)
γ1 · · · γs, 1 ≤ i ≤ 2s,

provided γk ≤ 1/32 for all k. Then the Lebesgue measure |Es| of the set Es does
not exceed (

√
e/16)s. Hence |K(γ)| = 0 for such a γ. In Section 4 we will show that

|K(γ)| = 0 as well if γk ≤ 1/6 for all k.
On the other hand, by choosing (γk)

∞
k=1 sufficiently close to 1/4, we can obtain

Cantor sets with positive Lebesgue measure. What is more, in the limit case, when
all γk = 1/4, we get Es = [0, 1] for all s and K(γ) = [0, 1] (see Example 1 in [16]).

In addition, using the Green function gC\K(γ) (see Corollary 1 and Section 6

in [16]), one can easily find Cap(K(γ)) = exp
(∑∞

k=1 2
−k log γk

)
. In the paper we

assume Cap(K(γ)) > 0. Let μK(γ) denote the equilibrium measure on the set, and
|| · || be the norm in the corresponding Hilbert space. From Corollary 3.2 in [1] we
have μK(γ)(Ij,s) = 2−s for all s and 1 ≤ j ≤ 2s, provided γk ≤ 1/32 for all k.

From now on, by Qn we denote the monic orthogonal polynomial of degree
n ∈ N with respect to μK(γ). The main result of this section is that, for n = 2s with
s ∈ N0, the polynomial Qn coincides with the corresponding Chebyshev polynomial
for K(γ). The next two theorems will play a crucial role.

Theorem 2.1 ([16], Prop.1). For each s ∈ N0 the polynomial P2s + rs/2 is the
Chebyshev polynomial for K(γ).

Remark 2.2. Only the values s ∈ N were considered in [16]. But, clearly, for s = 0
the polynomial P1(x) + 1/2 = x− 1/2 is Chebyshev.

Remark 2.3. Since real polynomials are considered here and the alternating set for
P2s + rs/2 consists of 2s + 1 points, the Chebyshev property of this polynomial
follows by the Chebyshev alternation theorem.

Theorem 2.4 ([26], III.T.3.6). Let K ⊂ R be a non-polar compact set. Then the
normalized counting measures on the zeros of the Chebyshev polynomials converge
to the equilibrium measure of K in the weak-star topology.

For s ∈ N, the polynomial P2s + rs / 2 has simple real zeros (xk)
2s

k=1 which are
symmetric about x = 1/2. Let us denote by νs the normalized counting measure

at these points, that is, νs = 2−s
∑2s

k=1 δxk
.

Lemma 2.5. Let s > m with s,m ∈ N0. Then
∫ (

P2m + rm
2

)
dνs = 0.

Proof. For m = 0 we have the result by symmetry. Suppose m ≥ 1. By (2.1), at
the points (xk)

2s

k=1, we have

P2s +
rs
2

= (P2s−1)2 + rs−1P2s−1 +
rs
2

= 0.
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The discriminant of the equation is positive. Therefore, the roots satisfy

(P2s−1 + α1
s−1)(P2s−1 + α2

s−1) = 0,

where α1
s−1 + α2

s−1 = rs−1 and 0 < α1
s−1, α

2
s−1 < rs−1. Thus, a half of the points

satisfies P2s−1 + α1
s−1 = 0 while the other half satisfies P2s−1 + α2

s−1 = 0.
Rewriting the equation P2s−1 + α1

s−1 = 0, we see that

P 2
2s−2 + rs−2P2s−2 + α1

s−1 = 0.

Since r2s−2 > 4rs−1 > 4α1
s−1, this yields

(P2s−2 + α1
s−2)(P2s−2 + α2

s−2) = 0

with α1
s−2 + α2

s−2 = rs−2 and 0 < α1
s−2, α

2
s−2 < rs−2. By the same argument, the

second half of the roots satisfies

(P2s−2 + α3
s−2)(P2s−2 + α4

s−2) = 0

with α3
s−2 + α4

s−2 = rs−2 and 0 < α3
s−2, α

4
s−2 < rs−2.

Since at each step r2i−1 > 4ri we can continue this procedure until obtaining

P2m+1 . So we can decompose the Chebyshev nodes (xk)
2s

k=1 into 2s−m−1 groups.
All 2m+1 nodes from the i−th group Gi satisfy

P2m+1 + αi
m+1 = 0, 0 < αi

m+1 < rm+1.

By using these 2s−m−1 equations we finally obtain

(P2m + α2i−1
m )(P2m + α2i

m) = 0

where α2i−1
m + α2i

m = rm. Thus, given fixed i with 1 ≤ i ≤ 2s−m−1, for 2m points
from the group Gi we have P2m = −α2i−1

m , whereas for the other half, P2m = −α2i
m.

Consequently,∫ (
P2m +

rm
2

)
dνs =

∫
P2mdνs +

rm
2

=

∑2s−m−1

i=1 2m(−α2i−1
m − α2i

m)

2s
+

rm
2

= 0.

�

Lemma 2.6. Let 0 ≤ i1 < i2 < . . . in < s. Then

(a)

∫
P2i1P2i2 · · ·P2indνs=

∫
P2i1dνs

∫
P2i2dνs · · ·

∫
P2indνs=(−1)n

n∏
k=1

rik
2
.

(b)

∫ (
P2i1 +

ri1
2

)(
P2i2 +

ri2
2

)
· · ·

(
P2in +

rin
2

)
dνs = 0.

Proof. (a) Suppose that i1 ≥ 1. As above, we can decompose the nodes (xk)
2s

k=1

into 2s−i1−1 equal groups such that the nodes from the j−th group satisfy
an equation

(P2i1 + α2j−1
i1

)(P2i1 + α2j
i1
) = 0

with α2j−1
i1

+ α2j
i1

= ri1 . If, on some set, (P2k + α)(P2k + β) = 0 with

α + β = rk, then P2k+1 = P 2
2k + P2k rk = −αβ. Hence, for each i ∈ N, the

polynomial P2k+i is constant on this set. Therefore the function P2i2 . . . P2in

takes the same value for all xk from the j−th group. This allows us to apply
the argument of Lemma 2.5:∫

P2i1P2i2 · · ·P2indνs = −ri1
2

∫
P2i2P2i3 · · ·P2indνs.
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This equality is valid also for i1 = 0 since∫ (
P1 +

1

2

)
P2i2 · · ·P2indνs = 0,

by symmetry. Proceeding this way, the result follows, since −rm/2 =∫
P2mdνs, by Lemma 2.5.

(b) Opening the parentheses yields∫
P2i1P2i2 · · ·P2indνs +

n∑
k=1

rik
2

∫ ∏
j �=k

P2ij dνs + · · ·+
n∏

k=1

rik
2
.

By Lemma 2.5 and part (a), this is

n∏
k=1

rik
2

·
n∑

k=0

(
n

k

)
(−1)n−k = 0.

�

Remark 2.7. We can use μK(γ) instead of νs in Lemma 2.5 and Lemma 2.6 since,
by Theorem 2.4, νs→μK(γ) in the weak-star topology.

Theorem 2.8. The monic orthogonal polynomial Q2s with respect to the equilib-
rium measure μK(γ) coincides with the corresponding Chebyshev polynomial P2s +
rs/2 for all s ∈ N0.

Proof. For s = 0 we have the result by symmetry. Let s ≥ 1. Each polynomial
P (x) of degree less than 2s is a linear combination of polynomials of the type(

P2s−1(x) +
rs−1

2

)ns−1

· · ·
(
P2(x) +

r1
2

)n1
(
x− 1

2

)n0

with ni ∈ {0, 1}. By Lemma 2.6, P2s + rs / 2 is orthogonal to all polynomials of
degree less than 2s, so it is Q2s . �

By (2.1), we immediately have

Corollary 2.9. Q2s+1 = Q2
2s − (1− 2 γs+1) r

2
s/4 for s ∈ N0.

3. Some products of orthogonal polynomials

So far we only obtain orthogonal polynomials of degree 2s. We try to find Qn

for other degrees. By Corollary 2.9, since
∫
Q2s+1dμK(γ) = 0, we have

(3.1) ||Q2s ||2 =

∫
Q2

2sdμK(γ) = (1− 2 γs+1) r
2
s/4

and

(3.2) Q2s+1 = Q2
2s − ||Q2s ||2, ∀s ∈ N0.

Our next goal is to evaluate
∫
AdμK(γ) for A-polynomial of the form

(3.3) A = (Q2sn )
in(Q2sn−1 )in−1 · · · (Q2s1 )

i1 ,

where sn > sn−1 > . . . > s1 > 0 and i1, i2, . . . , in ∈ {1, 2}.

The next lemma is basically a consequence of (3.2).
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Lemma 3.1. Let A be a polynomial satisfying (3.3). Then the following proposi-
tions hold:

(a) If in = 2, then

∫
AdμK(γ) = ‖Q2sn ‖2

∫
Q

in−1

2sn−1 · · ·Q i1
2s1dμK(γ).

(b) Suppose that n = k + m with in = in−1 = . . . = ik+1 = 1 and ik = 2. In
addition, let sk+j = sk + j for 1 ≤ j ≤ m. Then∫

AdμK(γ) = ‖Q2sn ‖2
∫

Q
ik−1

2sk−1 · · ·Q i1
2s1 dμK(γ).

(c) If ik = 1 and sk ≥ sk−1+2 for some k ∈ {2, 3, . . . , n}, then
∫

AdμK(γ) = 0.

(d) If i1 = 1, then

∫
AdμK(γ) = 0.

Proof. (a) Using (3.2), we have Q2
2sn = Q2sn+1 + ‖Q2sn ‖2. The result easily

follows since the degree of Q
in−1

2sn−1 · · ·Q i1
2s1 is less than 2sn+1.

(b) Here A = Q2sn Q2sn−1 · · ·Q2sk+1Q2
2sk ·P with P = Q

ik−1

2sk−1 · · ·Q i1
2s1 . Observe

that deg P < 2sk−1+2 ≤ 2sk+1 . We apply (3.2) repeatedly. First, since
sk+1 = sk + 1, we have Q2

2k = Q2sk+1 + ||Q2sk ||2. Similarly, Q2sk+1Q2
2sk =

Q2sk+2 + ||Q2sk+1 ||2+Q2sk+1 ||Q2sk ||2. After m steps we write A in the form
(Q2sn+1+‖Q2sn ‖2+L)P, where L is a linear combination of the polynomials
Q2sn , Q2snQ2sn−1 , · · · , Q2snQ2sn−1 · · ·Q2sk+1 . Here, 2sn > 2sn−1 + · · · +
2sk+1 + deg P. By orthogonality, all terms vanish after integration, except
‖Q2sn ‖2 P, which is the desired conclusion.

(c) Let us take the maximal k with such property. Repeated application of (a)
and (b) enables us to reduce

∫
AdμK(γ) to C

∫
A1 dμK(γ) with C > 0 and

A1 = Q2sm · · ·Q2sk ·R, where R = Q
ik−1

2sk−1 · · ·Qi1
2s1 with deg R < 2sk−1+2 ≤

2sk . Comparing the degrees gives the result.
(d) Take the largest k with i1 = i2 = · · · = ik = 1. Then, as above,

∫
AdμK(γ)

= C ·
∫
Q2sk · · ·Q2s1dμK(γ) = 0, since the degree of the first polynomial

exceeds the common degree of others. �

Theorem 3.2. For A−polynomial given in (3.3), let ck = (ik−1)sk−sk−1−1 and c =∏n
k=1 ck. Here, s0 := −1 and in+1 := 2. Then

∫
AdμK(γ) = c·

∏n
k=1 ||Q2k ||2(ik+1−1).

Proof. First we remark that c ∈ {0, 1}. Clearly, c1 = (i1 − 1)s1 = 0 if and only if
i1 = 1. For k > 1 we get ck = 0 if and only if ik = 1 and sk > sk−1 + 1. Therefore,
c = 0 just in the cases (c) and (d) above.

Let us show that the procedures (a)−(d) of Lemma 3.1 allow us to find
∫
AdμK(γ)

for all values of (ik)
n
k=1 and (sk)

n
k=1 stated after (3.3). Consider the string I =

{in, in−1, · · · , i1}. If i1 = 1, then c = 0 and
∫
AdμK(γ) = 0, by (d), so the result

follows. Suppose i1 = 2. Then we can decompose I into substrings of the types
{2}, {1, 2}, · · · , {1, · · · , 1, 2}. The number and the ordering of such substrings may
be arbitrary. We go over substrings of I in left-to-right order. If we meet {ik}
with ik = 2, then we use (a). Observe that here ik+1 = 2. Hence this substring
contributes a term ||Q2k ||2 into the product representing

∫
AdμK(γ). For a general

substring {ik, · · · , ik−m} with ik = · · · = ik−m+1 = 1, ik−m = 2 we also have
ik+1 = 2. Consider the corresponding values sj for k −m ≤ j ≤ k. Suppose that
these numbers are consecutive, that is, sj+1 = sj+1 for k−m ≤ j ≤ k−1. Then we
use the procedure (b). In this case, ik+1−1 = 1 and ij+1−1 = 0 for k−m ≤ j ≤ k−1.
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As above, the substring gives a contribution ||Q2k ||2 into the common product.
Otherwise, sj+1 ≥ sj + 2 for some j. Then, by (c),

∫
AdμK(γ) = 0. On the other

hand, here, c = cj = 0, so the desired representation for
∫
AdμK(γ) is valid as

well. �

Corollary 3.3. For A−polynomial given in (3.3), let A = A1 · Qi1
2s1 , so A1 con-

tains all terms of A except the last. Suppose i1 = i2 = 2. Then
∫
AdμK(γ) =

||Q2s1 ||2
∫
A1 dμK(γ).

We will represent Qn in terms of B-polynomials that are defined, for 2m ≤ n <
2m+1 with m ∈ N0, as

Bn = (Q2m)im(Q2m−1)im−1 . . . (Q1)
i1 ,

where ik ∈ {0, 1} is the k−th coefficient in the binary representation n = im 2m +
· · ·+ i0.

Thus, Bn is a monic polynomial of degree n. The polynomials B(2k+1)·2s and
B(2j+1)·2m are orthogonal for all j, k,m, s ∈ N0 with s �= m. Indeed, if min{m, s} =

0, then
∫
B(2k+1)·2s B(2j+1)·2m dμK(γ) = 0, since one polynomial is symmetric about

x = 1/2, whereas another is antisymmetric. Otherwise we use Lemma 3.1 (d). By
(a), we have

||Bn||2 =

m∏
k=0

||Q2k ||2ik =

m∏
k=0,ik �=0

||Q2k ||2.

Theorem 3.4. For each n ∈ N, let n = 2s(2k+1). The polynomial Qn has a unique
representation as a linear combination of B2s , B3·2s , . . . , B(2k−1)·2s , B(2k+1)·2s .

Proof. Consider P = a0B2s + a1B3·2s + . . . + ak−1B(2k−1)·2s + B(2k+1)·2s , where

(aj)
k−1
j=0 are chosen such that P is orthogonal to all B(2j+1)2s with j = 0, 1, . . . , k−1.

This gives a system of k linear equations with k unknowns (aj)
k−1
j=0 . The determi-

nant of this system is the Gram determinant of linearly independent functions
(B(2j+1)2s)

k−1
j=0 . Therefore it is positive and the system has a unique solution. In

addition, as was remarked above, P is orthogonal to all B(2j+1)·2m with m �= s.
Thus, P is a monic polynomial of degree n that is orthogonal to all polynomials of
degree < n, so P = Qn. �

Corollary 3.5. The polynomial Q2s(2k+1) is a linear combination of products of
the type Q2sm Q2sm−1 · · ·Q2s , so the smallest degree of Q2sj in every product is 2s.

To illustrate the theorem, we consider, for given s ∈ N0, the easiest cases with k ≤
2. Clearly, Q2s = B2s . Since B3·2s = Q2sQ2s+1 , we take Q3·2s = a0Q2s +Q2s+1Q2s ,
where a0 is such that

∫
Q3·2s Q2s dμK(γ) = 0. By Lemma 3.1,

Q3·2s = Q2s+1Q2s −
‖Q2s+1‖2
‖Q2s‖2

Q2s .

Similarly, B5·2s = Q2sQ2s+2 and Q5·2s = a0Q2s + a1Q2s+1Q2s +Q2sQ2s+2 with

a0 =
||Q2s+2 ||2

||Q2s ||4 − ||Q2s+1 ||2 , a1 = −a0
||Q2s ||2
‖Q2s+1‖2 .

Using (3.1), all coefficients can be expressed only in terms of (γk)
∞
k=1. As k gets

larger, the complexity of calculations increases.
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Remark 3.6. In general, the polynomial Qn is not Chebyshev. For example, Q3 =

Q1(Q2 + a0) with a0 = − (1−2γ2)γ
2
1

1−2γ1
. At least for small γ1, the polynomial Q3(x) =

(x − 1/2)(x2 − x + γ1/2 + a0) increases on the first basic interval I1,1 = [0, l1,1].
Here, l1,1 is the first solution of P2 = −r1, so l1,1 = (1−

√
1− 4γ1)/2. If Q3 is the

Chebyshev polynomial, then, by the Chebyshev alternation theorem, Q3(l1,1) =
Q3(1), but it is not the case.

4. Jacobi parameters

Since the measure μK(γ) is supported on the real line, the polynomials (Qn)
∞
n=0

satisfy a three-term recurrence relation

Qn+1(x) = (x− bn+1)Qn(x)− a2n Qn−1(x), n ∈ N0.

The recurrence starts from Q−1 :=0 and Q0=1. The Jacobi parameters {an, bn}∞n=1

define the matrix

(4.1)

⎛
⎜⎜⎜⎝

b1 a1 0 0 . . .
a1 b2 a2 0 . . .
0 a2 b3 a3 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎠ ,

where μK(γ) is the spectral measure for the unit vector δ1 and the self-adjoint oper-
ator J on l2(N), which is defined by this matrix. We are interested in the analysis
of asymptotic behavior of (an)

∞
n=1. Since μK(γ) is symmetric about x = 1/2, all bn

are equal to 1/2. It is known (see e.g. [30]) that an > 0, ||Qn|| = a1 · · · an, which,
in turn, is the reciprocal to the leading coefficient of the orthonormal polynomial
of degree n.

In the next lemmas we use the equality
∫
Qn Qm Qn+m dμK(γ) = ||Qn+m||2,

which follows by orthogonality of Qn+m to all polynomials of smaller degree.

Lemma 4.1. For all s ∈ N0 and k ∈ N we have

Q2s(2k+1) = Q2s ·Q2s+1k −
‖Q2s+1k‖2

‖Q2s(2k−1)‖2
Q2s(2k−1).

Proof. Consider the polynomial P = Q2s · Q2s+1k − ‖Q2s+1k‖
2

‖Q2s(2k−1)‖2Q2s(2k−1). Since

deg (Q2s ·Q2s+1k) > degQ2s(2k−1), it is a monic polynomial of degree 2s(2k + 1).
Let us show that P is orthogonal to Qn for all n with 0 ≤ n < 2s(2k+1). This will
mean that P = Q2s(2k+1).

Suppose 0 ≤ n < 2s(2k − 1). Then orthogonality follows by comparison of the
degrees.

If n = 2s(2k − 1), then
∫
P Qn dμK(γ) = 0 due to the choice of coefficient of the

addend in P and the remark above.
Let 2s(2k− 1) < n < 2s(2k+1). We show that

∫
Q2s Q2s+1k Qn dμK(γ) = 0. We

write k in the form k = 2q(2l+1) with some q, l ∈ N0. In turn, n = 2m(2p+1) with
m �= s. By Corollary 3.5, Q2s+1k is a linear combination of products of Q2sj with
min sj = s+ 1+ q in every product. Similarly for Qn, but here the smallest degree
is 2m. Therefore, Q2s Q2s+1k Qn is a linear combination of A−polynomials and for
each A−polynomial the exponent of the smallest term is 1. By Lemma 3.1(d), the
corresponding integral is zero. �
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Lemma 4.2. For all s ∈ N0 and k ∈ N we have

a22s(2k+1) a
2
2s(2k+1)−1 · · · a22s+1k+1 + a22s+1k a

2
2s+1k−1 · · · a22s+1k−2s+1 = ‖Q2s‖2.

Proof. By Lemma 4.1 and the remark above,

(4.2) ||Q2s(2k+1)||2 =

∫
Q2

2s Q
2
2s+1kdμK(γ) −

‖Q2s+1k‖4
‖Q2s(2k−1)‖2

.

Let us show that ∫
Q2

2s Q
2
2s+1kdμK(γ) = ||Q2s ||2||Q2s+1k||2.

If k = 2m, we have this immediately, by Lemma 3.1(a).
Otherwise, 2s+1k = 2m(2l + 1) with l ∈ N and m ≥ s + 1. Then, by Corollary

3.5, Q2s+1k is a linear combination of products Q2sq · · ·Q2sj · · ·Q2m with sj > m
except for the last term. From here, Q2

2s+1k = Q2
2m ·

∑
αj Aj , where

∑
αj Aj is a

linear combination of A−type polynomials with s1 > m for each Aj . Therefore,

||Q2s+1k||2 =
∑

αj

∫
AjQ

2
2m dμK(γ).

On the other hand,∫
Q2

2s Q
2
2s+1kdμK(γ) =

∑
αj

∫
AjQ

2
2m Q2

2s dμK(γ).

By Corollary 3.3, this is ||Q2s ||2||Q2s+1k||2.
Therefore, (4.2) can be written as

‖Q2s(2k+1)‖2
‖Q2s+1k‖2

= ‖Q2s‖2 −
‖Q2s+1k‖2

‖Q2s(2k−1)‖2
,

which is the desired result, as an = ‖Qn‖ / ‖Qn−1‖. �

Theorem 4.3. The recurrence coefficients (an)
∞
n=1 can be calculated recursively by

using Lemma 4.2 and (3.1).

Proof. We already have a1 = ||Q1|| and a2 = ||Q2|| / ||Q1||. Suppose, by induction,
that all ai are given up to i = n. If n+ 1 = 2s > 2, then

(4.3) an+1 =
||Q2s ||

||Q2s−1 || · a2s−1+1 · a2s−1+2 · · · a2s−1
,

where the norms of polynomials can be found by (3.1).
Otherwise, n + 1 = 2s(2k + 1) for some s ∈ N0 and k ∈ N. By Lemma 4.2, we

have

(4.4) a2n+1 = a22s(2k+1) =
‖Q2s‖2 − a22s+1k · · · a22s+1k−2s+1

a22s(2k+1)−1 · · · a22s+1k+1

,

provided s �= 0. If s = 0, then the denominator in the fraction above is absent. This
gives an+1, since the recurrence coefficients are positive. �

In order to illustrate the theorem, let us consider the cases of small s.
If s = 0, then n+ 1 = 2k + 1 and a22k+1 = a21 − a22k. Next, for s = 1 and s = 2,

a24k+2 =
||Q2||2 − a24k a

2
4k−1

a24k+1

, a28k+4 =
||Q4||2 − a28k a

2
8k−1 a

2
8k−2 a

2
8k−3

a28k+3 a
2
8k+2 a

2
8k+1

, etc.
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Thus, a1 =
√
1−2γ1

2 , a2 =
√
1−2γ2√
1−2γ1

γ1, a
2
3 = a21 − a22, a4 = γ1γ2

√
1−2γ3

a3
√
1−2γ2

, a25 = a21 − a24,

etc.

Remark 4.4. If γn < 1/4 for 1 ≤ n ≤ s and γn = 1/4 for n > s, then K(γ) =
Es = (2P2s/rs +1)−1[−1, 1]. Here (P2n + rn/2)

∞
n=0 are the Chebyshev polynomials

for Es, as is easy to check. Therefore Theorems 2.8 and 4.3 are applicable for
this case as well. For further information about Jacobi parameters corresponding
to equilibrium measures of polynomial inverse images, we refer the reader to the
article [15].

Remark 4.5. Suppose γn = 1/4 for n ≤ N with 2s ≤ N < 2s+1. Then a1 = 1/
√
8

and a2 = a3 = · · · = a2s+1−1 = 1/4. In particular, if γn = 1/4 for all n, then
an = 1/4 for all n ≥ 2, which corresponds to the case of the Chebyshev polynomials
of the first kind on [0, 1].

Lemma 4.6. Suppose γs ≤ 1/6 for all s. For fixed s ∈ N0, let c =
4γ2

s+1

(1−2γs+1)2
and

C = 2
1+

√
1−4c

. Then the following inequalities hold with k ∈ N0:

(a) If n = 2s(2k + 1), then

1

2
||Q2s ||2 ≤ C−1 ||Q2s ||2 ≤ a2n · · · a2n−2s+1 ≤ ||Q2s ||2.

(b) If n = 2s(2k + 2), then

a2n · · · a2n−2s+1 ≤ C
‖Q2s+1‖2
‖Q2s‖2

≤ 2
‖Q2s+1‖2
‖Q2s‖2

.

Proof. Note that, if γs+1 increases from 0 to 1/6, then c increases from 0 to 1/4
and C increases from 1 to 2. By (3.1) and the definition of rs, we get

(4.5)
‖Q2s+1‖2
‖Q2s‖2

= γ2
s+1 r

2
s

1− 2γs+2

1− 2γs+1
= (1− 2γs+2) c ‖Q2s‖2 < ‖Q2s‖2/4.

We proceed by induction. For a fixed s ∈ N0, let k = 0. Then we have at once

a22s · · · a21 = ‖Q2s‖2 and a22s+1 · · · a22s+1 =
‖Q2s+1‖2
‖Q2s‖2

.

Suppose (a), (b) are satisfied for k ≤ m. We apply Lemma 4.2 with k = m+ 1:

a22s(2m+3) · · · a22s(2m+2)+1 + a22s(2m+2) · · · a22s(2m+2)−2s+1 = ‖Q2s‖2,

where for the addend we can use (b) for k = m. Therefore,

‖Q2s‖2 − C
‖Q2s+1‖2
‖Q2s‖2

≤ a22s(2m+3) · · · a22s(2m+2)+1 ≤ ‖Q2s‖2,

which is (a) for k = m+ 1, by (4.5).
Next, we claim that

(4.6) a22s(2m+4) · · · a22s(2m+2)+1 ≤ ‖Q2s+1‖2

for m ∈ N0. If m = 2l + 1, then we use Lemma 4.2 with s+ 1 instead of s:

a22s+1(2k+1) · · · a22s+2k+1 + positive term = ‖Q2s+1‖2,

which implies (4.6), if we take k = l + 1, as 2(2k + 1) = 2m+ 4, 4k = 2m+ 2.
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Suppose m is even. Lemma 4.2 now gives

positive term + a22s+2k · · · a22s+2k−2s+1+1 = ‖Q2s+1‖2,

where we take k = m/2 + 1. Thus, (4.6) holds true in both cases.
Putting together (a) for k = m+ 1 and (4.6) we get (b) for k = m+ 1 . �

Theorem 4.7. Let γs ≤ 1/6 for all s. Then lim
s→∞

aj·2s+n = an for j ∈ N and

n ∈ N0. Here, a0 := 0. In particular, lim inf an = 0.

Proof. We first show that lim
s→∞

aj·2s = 0 for all j ∈ N. Let j = 2l(2k + 1) where

k, l ∈ N0. For s > 0, the Jacobi parameters admit the following inequality by
Lemma 4.6(a):

(4.7) a22s+l(2k+1) · · · a22s+l+1k+1 ≤ ‖Q2s+l‖2.

If i < s + l where i ∈ N0, we have 2s+l(2k + 1) − 2i = 2i(2s+l−i(2k + 1) − 1).
Since 2s+l−i(2k + 1) − 1 is a positive odd number, by Lemma 4.6(a), we have the
inequalities

1

2
‖Q2i‖2 ≤ a22s+l(2k+1)−2i · · · a22s+l(2k+1)−2i+1+1 for i = 0, . . . , s+ l − 1.

We multiply these s+ l inequalities side by side:

2−s−l||Q1||2 · · · ||Q2s+l−1‖2 ≤ a22s+l(2k+1)−1 · · · a22s+l+1k+1

and use (4.7):

a2j·2s = a22s+l(2k+1) ≤
2s+l‖Q2s+l‖2

‖Q2s+l−1‖2‖Q2s+l−2‖2 · · · ‖Q1‖2
.

By (4.5), the fraction above is bounded by 2−s−l+2. Thus, lim
s→∞

aj·2s = 0.

If n = 1, then a2j·2s+1 = a21 − a2j·2s → a21, which is our claim.
Suppose, by induction, that lim

s→∞
aj·2s+n = an for n = 0, 1, . . . ,m and all j ∈ N.

Let m+ 1 = 2p(2q+ 1) where p, q ∈ N0. If q = 0, then j · 2s +m+ 1 = j · 2s−p + 1,
so we get the case with n = 1. Thus, we can suppose q ∈ N. Then j · 2s +m+ 1 =
2p(2s+l−p(2k + 1) + 2q + 1) and, for large enough s, we can apply Lemma 4.2:

a2j·2s+m+1 a
2
j·2s+m · · · a2j·2s+m−2p+1 + a2j·2s+m−2p · · · a2j·2s+m+1−2p+1 = ‖Q2p‖2.

Here all indices, except the first, are of the form j · 2s + n with n < m + 1.
Therefore, by induction hypothesis, a2j·2s+n → an as s → ∞ and

( lim
s→∞

a2j·2s+m+1) a
2
m · · · a2m−2p+1 + a2m−2p · · · a2m+1−2p+1 = ‖Q2p‖2.

On the other hand, if we apply Lemma 4.2 to the number m + 1, then we get the
same equality with a2m+1 instead of lims→∞ a2j·2s+m+1. Since all ak are positive,
we have the desired result. �

Remark 4.8. Since lim inf an = 0, by [14], μK(γ) is purely singular. In particular,
this implies that μK(γ) is purely singular continuous since the equilibrium measure
cannot have point mass. Moreover, absence of a non-trivial absolutely continuous
part of the equilibrium measure, by [24], guarantees that the support has zero
Lebesgue measure. Thus |K(γ)| = 0 if γs ≤ 1/6 for all s ∈ N.
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5. Widom factors

A finite Borel measure μ supported on a non-polar compact set K ⊂ C is said

to be regular in the Stahl-Totik sense if lim
n→∞

‖Qn‖
1
n = Cap(K) where Qn is the

monic orthogonal polynomial of degree n corresponding to μ. It is known (see, e.g.,
[28, 31]) that the equilibrium measure is regular in the Stahl-Totik sense. While

‖Qn‖
1
n / Cap(K) has limit 1, the ratio Wn = ‖Qn‖ / (Cap(K))n may have various

asymptotic behavior. We call Wn the Widom factor due to the paper [32]. These
values play an important role in spectral theory of orthogonal polynomials on several
intervals.

Let

E = [α, β] \
n⋃

i=1

(αi, βi)

where α, β ∈ R and the intervals (αi, βi) are disjoint subsets of [α, β]. Let μ
be a unit Borel measure with its support equal to E. Furthermore, let dμ(t) =
f(t)dt on E where f is the Radon-Nikodym derivative of μ with respect to linear
Lebesgue measure and (an)

∞
n=1 be the Jacobi parameters corresponding to μ. Then

by Theorem 4.1 of [12]∫
log f(t)dμE(t) > −∞ ⇐⇒ lim sup

n→∞

a1 · · · an
Cap(E)n

> 0.(5.1)

For further generalizations and different aspects of this result, see [10,12,13,23,29].
We already know that Cap(K(γ)) = exp (

∑∞
k=1 2

−k log γk). In terms of (γk)
∞
k=1

we can rewrite ‖Q2s‖ as

(5.2)

√
1− 2γs+1

2
exp

(
2s

s∑
k=1

2−k log γk

)
.

Therefore,

(5.3) W2s =

√
1− 2γs+1

2 exp
(∑∞

k=s+1 2
s−k log γk

) ≥
√
2,

since γs ≤ 1/4. The limit values γs = 1/4 for all s give the Widom factors for the
equilibrium measure on [0, 1].

Clearly, (5.3) implies that lim supWn > 0. If γs ≤ 1/6 for all s, then

(5.4) W2s ≥
√
6.

Let us show that, in this case, lim infWn > 0.

Theorem 5.1. Let (Wn)
∞
n=1 be Widom factors for μK(γ) where γs ≤ 1/6 for all s.

Then

(a) lim inf
s→∞

W2s = lim inf
n→∞

Wn.

(b) lim sup
n→∞

Wn = ∞.

Proof. (a) We show that Wn > W2s for 2s < n < 2s+1. Let n = 2s+2s1 + . . .+
2sm with s > s1 > s2 > . . . > sm ≥ 0. Then we decompose the product
a1 · · · an into groups

(a1 · · · a2s) · (a2s+1 · · · a2s+2s1 ) · · · (a2s+···+2sm−1+1 · · · an).
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For the first group we have a1 · · · a2s = ||Q2s ||. For the second group we

use Lemma 4.6(a) with n = 2s + 2s1 : a2s+1 · · · a2s+2s1 ≥ ||Q2s1 ||/
√
2. A

similar estimation is valid for all other groups. Therefore,

Wn =
a1 · · · a2s

Cap(K(γ))2s
a2s+1 · · · a2s+2s1

Cap(K(γ))2
s1

· · · a2s+···+2sm−1+1 · · · an
Cap(K(γ))2sm

≥ W2sW2s1 · · ·W2sm (
√
2)−m,

which exceeds W2s(
√
3)m, by (5.4). From here, min2s≤n<2s+1 Wn = W2s

and the result follows.
(b) Applying the procedure above to W2s−1 and taking the limit gives the

desired result. �

In order to illustrate the behavior of Widom factors, let us consider some exam-
ples. Suppose γs ≤ 1/6 for all s.

Example 5.2. If γs → 0, then Wn → ∞. Indeed, W2s ≥ 1√
6
exp( 12 log 1

γs+1
).

Example 5.3. There exists γs � 0 with Wn → ∞. Indeed, we can take γ2k =
1/6, γ2k−1 = 1/k.

Example 5.4. If γs ≥ c > 0 for all s, then lim infn→∞ Wn ≤ 1/2c.

Example 5.5. There exists γ with inf γs = 0 and lim infn→∞ Wn < ∞. Here we
can take γs = 1/6 for s �= sk and γsk = 1/k for a sparse sequence (sk)

∞
k=1. Then

(W2sk )
∞
k=1 is bounded.

6. Towards the Szegő class

The convergence of the integral on the left-hand side of (5.1) defines the Szegő
class of spectral measures for the finite gap Jacobi matrices. The Widom condition
on the right-hand side is the main candidate to characterize the Szegő class for the
general case; see [10, 23, 29].

For the definition of regularity for the Dirichlet problem, see e.g., Chapter 4
in [25]. The equilibrium measure is the most natural measure in the theory of
orthogonal polynomials. In particular, for known examples, the values lim supWn

associated with equilibrium measures are bounded below by positive numbers. So
we make the following conjecture:

Conjecture 6.1. If a compact set K is regular with respect to the Dirichlet problem,
then the Widom condition Wn � 0 is valid for the equilibrium measure μK .

Concerning the Szegő condition, one can conjecture that the left-hand side of
(5.1) can be written as

(6.1) I(μ) :=

∫
log(dμ/dμK)dμK(t) > −∞

provided that the support of μ is a perfect non-polar compact set. Indeed, for
the finite gap case, this coincides with the condition in (5.1), since the integral∫
log(dμK/dt)dμK(t) converges. By Jensen’s inequality (see also Section 4 in [12]),

the value I(μ) is non-positive and it attains its maximum 0 just in the case μ = μK

a.e. with respect to μK . On the other hand, there are strong objections to (6.1),
based on the numerical evidence from [18], where, for the Cantor-Lebesgue measure
μCL on the classical Cantor set K0, the Jacobi parameters (an) were calculated for
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n ≤ 200.000. Krüger-Simon conjectured that (see e.g. Conjecture 3.2 in [18]) the
Widom factors for the Cantor-Lebesgue measure is bounded below by a positive
number. Therefore, if we wish to preserve the Widom characterization of the Szegő
class, the integral I(μCL) must converge, but, since μCL and μK0

are mutually
singular, it is not the case.
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